Controls

VSD Series Quick Start Guide

IMPORTANT: This guide is intended to provide a guick reference to the VSD Series drive's Application Software features for start-up, programming and service. It does not replace the need to thoroughly read and understand the User Manual.

Table of Contents

Description

NEMA Type 1/12 Open Drives (1 – 250 HP)	2
NEMA Type 1 IntelliPass/IntelliDisconnect Drive	5
Enclosed NEMA Type 12/3R	10
Appendix A — Main Control Board Wiring	15
Appendix B — Interlock Damper Start Example Using 4 – 20 mA Control Signal	16
Appendix C — Interlock Damper Start Example Using PID Duct Static Control Signal	17
Appendix D — Bypass Wiring Diagram	18
Appendix E — Keypad Navigation	19
Appendix F — Main Menu Navigation	20
Appendix G — Start-Up Wizard	21
Appendix H — Static Checking	25
Appendix I — Fault and Warning Codes	27

Technical Support Phone Numbers

Branch: 800-281-3792 (Option 1)

Third Party (ABCS/DIST): 800-445-4757 (Option 1)

NEMA Type 12

NEMA Type 3R

General

Upon receipt of the unit, verify that the catalog number and unit options stated on the shipping container match those stated on the order/purchase form.

Inspect the equipment upon delivery. Report any carton damage to the carrier prior to accepting the delivery. Have this information noted on the freight bill. Johnson Controls is not responsible for damage incurred in shipping.

Unpacking

Page

Remove all packing material from the unit. Be sure to remove all packing material from lug location. Also, make sure no packing material is left behind that would block the airflow to the fan.

Check the unit for any signs of shipping damage. If damage to the product is found after unpacking, report it to the freight company. Retain the packing materials for the carrier to review.

Storage

It is recommended that the unit be stored in its original shipping box/crate until it is to be installed.

The unit should be stored in a location where:

- The ambient temperature is between -40°F and 158°F (-40°C and 70°C)
- The relative humidity is between 0% and 95%, non-condensing
- The environment is dry, clean, and non-corrosive
- The unit will not be subjected to high shock or vibration conditions

Mandatory Ground Wiring (See Appendix D on Page 18)

Be sure to pull low impendance ground wiring from customer power to drive and ground wire from drive to motor.

NEMA Type 1/12 Open Drives (1 – 250 HP)

Table 1: Control Wiring Instructions

Power Wiring

Notice

Do not discard the plastic bag containing the wiring plate.

2. Remove the bottom cover by rotating the cover toward you on the base hinges, then lifting the cover away from the base.

3. Locate the plastic bag shipped with the drive containing the wiring plate, and remove the wiring plate.

VSD Series Quick Start Guide

NEMA Type 1/12 Open Drives (1 – 250 HP)

Table 1: Control Wiring Instructions (continued)

Power Wiring

- 4. If conduit is being used, attach the wiring plate to it.
- 5. Pass the motor and input power wires/cables through the holes of the wiring plate.
- 6. If shielded cable is used, connect the shields of the input line power cable and the motor cable to the motor and power ground terminals of the VSD Series drive.

Power Wiring/Grounding

 Wire power terminals, motor terminals, and grounding terminals per diagram. Power and Motor leads must be in separate conduit.

Note: Do not wire motor loads to B- B+ R-. This will cause damage.

GROUND WIRING

- Run motor cables in separate conduit.
- DO NOT RUN CONTROL WIRES in same conduit
- Cables sized per NEC.
- Provide low impedance ground between drive and motor.

IMPORTANT: Improper grounding could result in damage to the motor and/or drive and could void warranty

Control Wiring

8. Wire the control terminals following the details for the specific option boards shown on the following pages.

Note: For ease of access, the option board terminal blocks can be unplugged for wiring.

Note: If using conduit or Seal Tite for control wiring for Frame 4, you must order NEMA Type 12 kit.

NEMA Type 1/12 Open Drives (1 – 250 HP)

Table 1: Control Wiring Instructions (continued)

9. Wire control to the OPTA9 Control Board and OPTA2.

Note: Drive default is programmed for Damper Interlock.

Note: Option Boards OPTC2 (N2/XT/SA Bus) and OPTC4 (LonWorks) are optional.

Mandatory Ground Wiring

Be sure to pull low impendance ground wiring from customer power to drive and ground wire from drive to motor.

I/O Connection

- Run 110 Vac and 24 Vdc Control wiring in separate conduit.
- · Communication wire to be shielded.
- · RS-232 Keypad cable less than 20 feet.

See Appendix G.

NEMA Type 1 IntelliPass/IntelliDisconnect Drive

Figure 5: VSD Series IntelliPass/IntelliDisconnect Drive Dimensions

Table 2: VSD Series NEMA Type 1 IntelliPass/IntelliDisconnect Drive Dimensions

Drive Horsepower (VT)	Frame Size	Approximate Dimensions in Inches (mm)		Approx. Weight in Ibs. (kg)	Distance Between Drives in Inches (mm) ⁽¹⁾	
		Α	В	С		D
208V, 1 – 3 hp 230V, 1 – 3 hp 480V, 1 – 7-1/2 hp	FR4	5.04 (128)	18.25 (464)	13.24 (336)	21 (9.5)	5.3 (134.6)
208V, 5 – 7-1/2 hp 230V, 5 – 10 hp 480V, 10 – 20 hp	FR5	5.50 (140)	23.25 (591)	13.24 (336)	35 (15.9)	5.7 (144.8)
208V, 10 – 20 hp 230V, 15 and 20 hp 480V, 25 – 40 hp	FR6	7.50 (191)	29.38 (746)	15.25 (387)	67 (30.4)	7.5 (190.5)
208V, 25 and 30 hp 230V, 25 and 30 hp 480V, 50 – 75 hp	FR7	9.10 (231)	37.53 (953)	15.25 (387)	108 (49.0)	9.0 (228.6)

① If mounting two or more IntelliPass Drives next to each other, make sure to use the proper spacing between the drives for hinged door operation.

NEMA Type 1 IntelliPass/IntelliDisconnect Drive

Table 3: Bypass Power Wiring Instructions — NEMA Type 1

Powered by Eaton's Technology

November 2009

VSD Series Quick Start Guide

NEMA Type 1 IntelliPass/IntelliDisconnect Drive

Table 3: Bypass Power Wiring Instructions - NEMA Type 1 (continued)

Motor Wiring

- 13. Use your first and second fingers and simultaneously push down to release the two orange retaining clips (one on each side of the 24V DC motor overload terminal block).
- 14. If necessary, use a flat-blade screwdriver to carefully remove the terminal block in a straight plane to avoid damaging it.

Motor Wiring

- 15. Connect the motor leads to the motor overload terminals labeled 1TA, 1TB and 1TC.
- 16. Using the appropriate metric Allen wrench (2.5 mm, 3 mm or 4 mm), tighten each overload terminal per the specifications in the contactor user's manual.

MOTOR WIRING

An SAE allen wrench will damage the terminals, and the motor overload will need to be replaced (not covered by warranty).

- 17. Using the torgue wrench, tighten each terminal to the torque value found in the appropriate user's manual supplied with the drive.
- 18. Reinsert the motor overload terminal block.

Grounding

19. Use a flat-blade screwdriver to connect the motor ground wire to the ground stud (located at either the top or bottom of the drive's enclosure). (Mandatory) Ground connection main power ground must be connected to other ground screws.

GROUND WIRING

- Run motor cables in separate conduit.
- DO NOT RUN CONTROL WIRES in same conduit · Cables sized per NEC.
- Provide low impedance ground between drive and motor.

Motor Overload Terminals

Motor Ground Stud

Auto/Manual

Reset

November 2009

NEMA Type 1 IntelliPass/IntelliDisconnect Drive

Table 3: Bypass Power Wiring Instructions — NEMA Type 1 (continued)

Setting Overload

- 20. Lift to open the cover on the motor overload, and use a 1/8" flat-blade screwdriver to set the overload amperage to match the value on the motor nameplate.
- 21. Turn the auto/manual reset (factory default is manual) on the motor overload 90° to the auto position.

Control Wiring

- 22. Use a flat-blade screwdriver to carefully remove the lowvoltage I/O terminal block.
- 23. Insert the incoming control leads into the terminal block. Refer to the electrical schematic supplied with the drive.
- 24. Reinsert the I/O terminal block into the control board.
- 25. Verify that all other wires to the terminal block are connected.
- 26. Terminate control wiring to the OPTA9 and OPTA2 board (Terminals 1 26).

CONTROL WIRING

- Run 110 Vac and 24 Vdc control wiring in separate conduit.
- Communication wire must be shielded.
- RS-232 keypad cable must be less then 25 feet.

Powered by Eaton's Technology

November 2009

NEMA Type 1 IntelliPass/IntelliDisconnect Drive

able 3: Bypass Power Wiring Instructions — NEMA Type 1 (continued)

Enclosed NEMA Type 12/3R

Figure 7: Identification of NEMA Type 12 and NEMA Type 3R Components

Note: You will need to consult the electrical schematic supplied with the drive and the appropriate wiring diagram in Appendix D.

Table 4: VSD Series NEMA Type 12 Enclosed IntelliPass Drive Dimensions

Drive Horsepower (VT)	Frame Size	Enclosure Box	Approximate Dimensions in Inches (mm)		ons in
			Α	В	С
208V, 1 – 15 hp 230V, 1 – 15 hp 480V, 1 – 30 hp 575V, 3 – 30 hp	FR4 – FR6 FR4 – FR6 FR4 – FR6 FR6	A	16.92 (429.8)	29.00 (736.6)	18.60 (472.4)
208V, 20 – 30 hp 230V, 20 – 30 hp 480V, 40 – 75 hp 575V, 40 – 50 hp	FR6 – FR7	В	20.92 (531.3)	40.00 (1016.0)	19.10 (485.1)
208V, 40 – 60 hp 230V, 40 – 60 hp 480V, 100 – 150 hp	FR8	С	30.92 (785.3)	52.00 (1320.8)	19.10 (485.1)

Table 5: VSD Series NEMA Type 3R Enclosed IntelliPass Drive Dimensions

Drive Horsepower (VT)	(VT) Frame Enclosure Approximate Dimensi Size Box Inches (mm)		ons in		
			Α	В	С
208V, 1 – 15 hp 230V, 1 – 15 hp 480V, 1 – 30 hp 575V, 3 – 30 hp	FR4 – FR6	A	21.05 (534.7)	33.00 (838.2)	19.57 (497.0)
208V, 20 – 30 hp 230V, 20 – 30 hp 480V, 40 – 75 hp 575V, 40 – 50 hp	FR6 – FR7	В	26.31 (668.3)	46.09 (1170.7)	20.07 (509.9)
208V, 40 – 60 hp 230V, 40 – 60 hp 480V, 100 – 150 hp	FR8	С	37.73 (958.3)	58.09 (1475.5)	20.08 (510.0)

Floor Stands available on Box C only and can be purchased and shipped separately

 Floor Stands available on Box C only and can be purchased and shipped separately as kit.

2

as kit.

Figure 8: VSD Series Enclosed Drive Dimensions

Enclosed NEMA Type 12/3R

Table 6: Bypass Power Wiring Instructions - NEMA Type 12/3R

Mounting Drive

- 1. Mount drive per dimensions. (See Page 10.)
- 2. Verify that the main power source is removed upstream.
- 3. Remove the keypad cable from the drive.
- 4. Remove the screws from the drive cover, and remove the cover.

The circuit breaker extension bar is sharp and can cause injury.

5. Calibrate the circuit breaker amperage, so it is 1.25 times the value on the motor nameplate, by turning the red set screw located below the circuit breaker extension bar. See the circuit breaker user's manual supplied with the drive.

Power and Ground Wiring

 Using a Greenlee conduit cutter (recommended), cut three holes in the drive's enclosure for the incoming power, motor and low-voltage control leads.

POWER WIRING

Note: Power, motor and control leads must each be located in separate conduit.

- DO NOT RUN CONTROL WIRING in same conduit with power wiring.
- Provide low impedance ground connection to drive chassis.
- DO NOT CONNECT B+, B-, R terminal. (Reserved for Braking Resistor only.)
- 7. Connect the incoming power leads to circuit breaker terminals labeled L1, L2 and L3.
- 8. Using the torque wrench, tighten each terminal to the torque value found in the appropriate user's manual supplied with the drive.
- 9. Connect the power ground wire to the ground stud. Connect motor ground to ground stud.

Setting Space Heater

10. If applicable, set the space heater. See the space heater user's manual supplied with the drive.

Note: The space heater is used to prevent condensation from damaging the equipment when the drive is not operating (OFF).

Space Heater Temperature Setting

Enclosed NEMA Type 12/3R

Table 6: Bypass Power Wiring Instructions - NEMA Type 12/3R (continued)

Motor Wiring 11. Use your first and second fingers and simultaneously push down to release the two orange retaining clips (one on each side of the 24V DC motor overload terminal block). Orange Bypass 12. If necessary, use a flat-blade screwdriver to carefully Retaining Clips Contactor remove the terminal block in a straight plane to avoid Assembly damaging it. Setting Motor Overload 13. Lift to open the cover on the motor overload, and use a 1/8" flat-blade screwdriver to set the overload amperage to match the value on the motor nameplate. Auto/Manual Reset 14. Turn the auto/manual reset (factory default is manual) on the motor overload 90° to the auto position. **Bypass** Contactor Assembly **Motor Wiring** Motor Motor Leads Overload 15. Connect the motor leads to the motor overload terminals Terminals labeled 1TA, 1TB and 1TC. 16. Using the appropriate metric Allen wrench (2.5 mm, 3 mm or 4 mm), tighten each overload terminal per the specifications in the contactor user's manual. **MOTOR WIRING** An SAE allen wrench will damage the terminals, and the motor overload will need to be replaced Motor (not covered by warranty). Ground 17. Using the torque wrench, tighten each terminal to Stud the torque value found in the appropriate user's manual supplied with the drive. 18. Reinsert the motor overload terminal block. 19. Connect the motor ground wire to the ground stud. Note: Run motor cables in separate conduit. · Do not run control wires in same conduit. · Size motor leads per NEC. · Provide low impedance ground.

Powered by Eaton's Technology

November 2009

VSD Series Quick Start Guide

Enclosed NEMA Type 12/3R

Table 6: Bypass Power Wiring Instructions — NEMA Type 12/3R (continued)

Control Wiring

- 20. Use a flat-blade screwdriver to carefully remove the low-voltage I/O terminal block.
- 21. Reinsert the I/O terminal block into the control board.
- 22. Terminate control wiring to the OPTA9 and OPTA2 board (Terminals 1 26).

Note: Use 1/8" flat-blade.

CAUTION

• Run 110 Vac and 24 Vdc control wiring in separate conduit.

- Communication wire to be shielded.
- RS-232 keypad cable must be less then 25 feet (to prevent nuisance trips).

Powered by Eaton's Technology

November 2009

Enclosed NEMA Type 12/3R

Table 6: Bypass Power Wiring Instructions — NEMA Type 12/3R (continued)

lohnson

Controls

Appendix A — Main Control Board Wiring

Main Control Board Wiring Default in Slot A and B

Card is programmable for a 0 – 10V DC with change in jumper. Add X6 jumper on Board A6 from A-B to C-D.

Appendix B — Interlock Damper Start Example

Interlock Damper Start Example Using 4 – 20 mA Control Signal

Hit (HOA) twice, enter

Send START Signal from Field Controller to start drive.

Figure 12: Programming Example

Controls

Appendix C — Interlock Damper Start Example

Interlock Damper Start Example Using PID Duct Static Control Signal

Figure 13: Interlock Damper Start with PID Duct Static Example

- Step 1. Wire load line, digital I/O per example and verify voltage and amperage
- Step 2. Static check drive SCR, IGBT, DC Bus per Static Check, Page 20 and 21
- Step 3. Start-up wizard (Duct static application)
- Step 4. Select hand (HOA) to check motor rotation
- Step 5. Press Start and $\left(\stackrel{\triangle}{}_{+} \right)$ to increase speed in Hand mode
- Step 6. Select Remote (HOA) to run in Auto
- Step 7. Tune PID per diagram below

Figure 14:

Figure 15: PID Flow Chart

Appendix D — Bypass Wiring Diagram

Figure 16:

18

Appendix E — Keypad Navigation

Keypad Navigation

Figure 17: Keypad and Display

Figure 18: Operate Menu Navigation

Appendix F — Main Menu Navigation

Main Menu Navigation

Parameter Menu Structure Example

Figure 19: Main Menu Navigation

Powered by Eaton's Technology

Appendix G — Start-Up Wizard

Start-Up Wizard

Duct Static, Building Static, Pressure Control, Temperature Control, Generic PI

Upon initial power up, the **Start-Up Wizard** guides the commissioner through the basic VSD Series setup. The **Start-Up Wizard** may be set to function upon power up by setting parameter P5.5.3, or by pressing the STOP/RESET button for 5 seconds while in the "Operate Menu". The display will read "Start-Up Wizard Activate!" after 5 seconds.

Figure 21: Start-Up Wizard Navigation (1 of 3)

Note: Use $\uparrow\downarrow$ for changing parameter. Then press ENTER to save and move forward.

Figure 22: Start-Up Wizard Navigation (2 of 3)

Figure 23: Start-Up Wizard Navigation (3 of 3)

Note: Start-Up Wizard can be cancelled with the STOP/RESET button. If pressed, the text "EXIT?" is shown on the display along with "No" and "Yes".

Note: In Pressure Control application, inverse selection is an option.

Remote Input Application

The Remote Input application uses a slightly different Start-Up Wizard:

Figure 24: Remote Input Start-Up Wizard

Appendix H — Static Checking

Static Checking

Static checking tests the integrity of the power-carrying components (diodes, capacitors and IGBTs) within the drive assembly. Performing these static checks ensures that no damage occurred during shipping or installation that could cause a failure when the drive is powered.

Make sure there is no power to the drive before proceeding with any of the static checks.

After checking each set of terminals, zero out the multimeter by touching the metal tips of the red (positive) and black (negative) leads to each other.

Note: Set the multimeter to the diode function, and check each power terminal consecutively with each DC bus terminal as indicated in **Table 7**.

Table 7: Static Checks of Converter

DC Bus Terminal	Power Terminal	Multimeter		
	L1	L2	L3	Reading
B+ (1st Overload Check)	Insert black (-)	Insert black (-)	Insert black (-)	.OL
Insert red (+) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.	
B- (2nd Overload Check)	Insert red (+)	Insert red (+)	Insert red (+)	.OL
Insert black (-) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.	
B- (1st Voltage Check)	Insert black (-)	Insert black (-)	Insert black (-)	.25 – .55V DC
Insert red (+) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.	(±10%)
B+ (2nd Voltage Check)	Insert red (+)	Insert red (+)	Insert red (+)	.25 – .55V DC
Insert black (-) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.	(±10%)

Note: Set the multimeter to the diode function, and check each motor terminal consecutively with each DC bus terminal as indicated in **Table 8**.

Table 8: Static Checks of Inverter

DC Bus Terminal	Motor Terminal or	Multimeter		
	T1	T2	T3	Reading
B+ (1st Overload Check)	Insert black (-)	Insert black (-)	Insert black (-)	.OL
Insert red (+) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.	
B- (2nd Overload Check)	Insert red (+)	Insert red (+)	Insert red (+)	.OL
Insert black (-) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.	
B- (1st Voltage Check)	Insert black (-)	Insert black (-)	Insert black (-)	.25 – .40V DC (±10%)
Insert red (+) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.	
B+ (2nd Voltage Check)	Insert red (+)	Insert red (+)	Insert red (+)	.25 – .40V DC (±10%)
Insert black (-) multimeter lead.	multimeter lead.	multimeter lead.	multimeter lead.	

Appendix H — Static Checking, continued

Note: Set the multimeter to the ohm function, and check the power gµround terminal and DC bus terminals as indicated in **Table 9**.

Note: Frame 6 and larger use a "Hybrid" rectifier section. "Shown in Service Manual." Readings will be different when taking measurements from (B+) DC.

Table 9: Static Checks of DC Bus

DC Bus Terminal	DC Bus Terminal (B-)	Ground Terminal (Power)	Multimeter Reading
B+ (Overload Check) Insert red (+) multimeter lead.	Insert black (-) multimeter lead.	Not used.	.OL
B+ (1st Ohm Check) Insert black (-) multimeter lead.	Not used.	Insert red (+) multimeter lead.	O.L
B- (2nd Ohm Check) Insert black (-) multimeter lead.	Not used.	Insert red (+) multimeter lead.	O.L

Figure 25 is a detailed schematic to aid in performing the static checks.

Continuity Test to Ground

Test L1, L2, L3 to ground. T1, T2, T3 to ground.

This should read .OL ohms.

Figure 25: Schematic for Static Checks (Sample for Frames 4 and 5)

Appendix I — Fault and Warning Codes

Table 10: Fault and Warning Codes/Solutions

Fault Code	Fault	Possible Cause	Solution
1	Overcurrent	VSD Series drive has detected a high current (>4xl _n) in its output due to: • sudden heavy load increase • short in the motor • short in the cables to the motor • unsuitable motor	Check loading. Check motor. Check cables.
2	Overvoltage	The DC-link voltage has exceeded its high limit due to: • too short a deceleration time • high voltage levels or surges in the utility supply	Make the deceleration time longer. Use brake chopper and brake resistor (standard on some models, available as options on others). Correct utility supply voltage (level is too high). Add input impedance to limit surges.
3	Ground (Earth) Fault	Current sensing indicates that the sum of motor phase currents is not zero. • insulation failure in motor or motor cables	Check motor and motor cables.
5	Charging Switch	The charging switch was open, when the START command was given due to: • faulty operation • component failure	Reset the fault and restart. Should the fault re-occur, contact your Johnson Controls distributor.
6	Emergency stop	An Emergency stop signal was received from one of the digital inputs	Determine reason for the Emergency stop and remedy it.
7	Saturation trip	• defective component • motor or motor cable short	Cannot be reset from the keypad. Switch off power. IF THE PROBLEM IS NOT IN THE MOTOR OR ITS CABLES, DO NOT RE-CONNECT POWER! Contact your Johnson Controls distributor. If this fault appears simultaneously with Fault 1, check the motor and motor cables.
8	System fault	component failure faulty operation Note: exceptional fault data record, see Active Fault Menu for more information	Reset the fault and restart. Should the fault re-occur, contact your Johnson Controls distributor.
9	Undervoltage	DC-link voltage is less than the minimum safe operating voltage limit • most probable cause: too low a utility supply voltage • VSD Series internal fault	If there was a supply voltage loss or dip, reset the fault and restart the VSD Series drive. Check the supply voltage. If it was within specification at the time of the fault, an internal failure has occurred. Contact your Johnson Controls distributor.
10	Input line supervision	Input line phase is low or missing.	Check the utility supply voltage, cables and connections.
11	Output phase supervision	Current sensing indicates that there is no current in one motor phase	Check the motor cables, connections and motor.
12	Brake chopper supervision	 no brake resistor installed brake resistor is broken brake chopper failure 	Check the brake resistor. If the resistor is ok, the chopper is faulty. Contact your Johnson Controls distributor.
13	VSD Series under- temperature	Heatsink temperature is under -10°C	Provide supplemental heating or relocate the VSD Series drive to a warmer location.
14	VSD Series overtemperature	Heatsink temperature is over 90°C.	An overtemperature warning is issued when the heatsink temperature exceeds 85°C, a fault occurs at 90°C. Check for the correct amount and unrestricted flow of cooling air. Check the heatsink for dust or dirt buildup. Check the highest ambient temperature level. Make sure that the switching frequency is not set too high in relation to the ambient temperature and motor load.
15	Motor stalled	 motor or load mechanical failure load too high stall parameter settings incorrect 	Check the motor, mechanical system and load level. Confirm the stall parameter settings.
16	Motor overtemperature	motor is overloaded motor overheating has been detected by VSD Series • motor temperature model	Decrease the motor load. If no motor overload exists, check the temperature model parameters.
17	Motor underload	mechanical or load problem underload parameter settings incorrect	Check the motor, check for a loose belt, broken coupling or load problems. Confirm underload parameter settings.
22 23	EEPROM checksum fault	Parameter save fault faulty operation component failure	Upon reset of this fault, the VSD Series drive will automatically reload the parameter default settings. Check all parameter settings after reset. If the fault reoccurs, contact your Johnson Controls distributor.
25	Microprocessor watchdog fault	faulty operation component failure	Reset the fault and restart. If the fault reoccurs, contact your Johnson Controls distributor.

Appendix I — Fault and Warning Codes, continued

Table 10: Fault and Warning Codes/Solutions (continued)

Fault Code	Fault	Possible Cause	Solution
26	Start-up prevented	Start-up of the drive has been prevented.	Check Start Enable/Interlock settings.
29	Thermistor fault	The thermistor input of an option board has detected a high motor temperature	Check the motor cooling and the motor loading. Check the thermistor connection. (If the thermistor input of an option board is not being used, it must be short-circuited.)
31	IGBT temperature hardware	IGBT Inverter Bridge overtemperature protection has detected high short term overload current	Check loading. Check motor size.
32	Fan cooling	The VSD Series cooling fan did not start when commanded	Contact your Johnson Controls distributor.
34	CAN bus communication	Sent message not acknowledged	Ensure that there is another device on the bus with the appropriate configuration.
36	Control unit	Control unit cannot control the power unit and vise-versa	Change control unit.
37	Device change	 option board changed different power rating of drive 	Reset. Note: No fault time data record!
38	Device added	 option board added drive of different power rating added 	Reset. Note: No fault time data record!
39	Device removed	 option board removed drive removed 	Reset. Note: No fault time data record!
40	Device unknown	Unknown option board or drive	Contact your Johnson Controls distributor.
41	IGBT temperature software	IGBT Inverter Bridge overtemperature protection has detected high short term overload current	Check loading. Check motor size.
42	Brake resistor overtemperature	Brake resistor overtemperature protection has detected excessive braking	Set the deceleration time longer. Use an external brake resistor.
43	Encoder fault	Note: the exceptional Fault data record. See Active Fault Menu for more information. Additional codes: 1 Encoder 1 channel A is missing 2 Encoder 1 channel B is missing 3 Both encoder 1 channels are missing 4 Encoder reversed	Check encoder channel connections. Check the encoder board.
50	Analog input l _{in} < 4 mA (for signal range 4 to 20 mA)	Current at the analog input is < 4 mA • control cable is broken or loose • signal source has failed	Check the current loop, signal source and wiring.
51	External fault	Digital input set as an external fault input has been triggered.	Check source of trigger.
52	Keypad communication fault	The connection between the control keypad and the VSD Series drive has been lost.	Check keypad connection and keypad cable.
53	Communication bus fault	The data connection between the communication bus master and the communication bus board has failed	Check installation. If installation is correct, contact your Johnson Controls distributor.
54	Slot fault	Defective option board or slot	Check that the board is properly installed and seated in slot. If installation is correct, contact your Johnson Controls distributor.
82	BypassOverLoad	The motor has been overloaded while connected to the bypass	Decrease the motor load. Disable the Current Imbalance feature – see the <i>IT.</i> manual.

Powered by Eaton's Technology

Controls Group 507 E. Michigan Street P.O. Box 423 Milwaukee, WI 53201